VASAVI COLLEGE OF ENGINEERING (Autonomous) HYDERABAD

 MCA. I/III I-Semester(Main) Examinations, March-2015Discrete Mathematics
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B
Part-A (Marks: 10 X 2 $=20$)
1 Use Equivalences to prove that $\mathrm{P} \rightarrow(\mathrm{Q} \Lambda \mathrm{R}) \Leftrightarrow(\mathrm{P} \rightarrow \mathrm{Q}) \Lambda(\mathrm{P} \rightarrow \mathrm{R})$
2 Express the statement "Every Student in this class has studied Mathematics" as a Universal Quantifier.

3 Use mathematical Induction to prove that 5 divides $\mathrm{n}^{5}-\mathrm{n}$ whenever n is a non negative integer.

Define the terms: On-to function and One-to-One function.
In how many ways can the letters in ARRANGMENT be arranged so that there are exactly two pairs of consecutive identical letters?

6 Find the coefficient of x^{72} in $\left(x^{8}+x^{9}+x^{10}+\ldots . .\right)^{8}$.
7 Define the following terms: Semi group and monoid.

Define a Tree.

Part-B (Marks: $5 \times 10=50$)
(All bits carry equal marks)
11 (a) Establish the validity of the following argument by the method of proof by contradiction
$\mathrm{p} \rightarrow(\mathrm{q} \Lambda \mathrm{r})$
$\mathrm{r} \rightarrow \mathrm{s}$
$\neg(\mathrm{q} \Lambda \mathrm{s})$
$\therefore \neg \mathrm{p}$
(b) Prove or disprove the validity of the following arguments using rules of inference:

No Junior or Senior is enrolled in a Physical education class.
Mary Gusberti is enrolled in a Physical education class.
Therefore Mary Gusberti is not a senior.
12 (a) Draw the Hasse Diagram of $\{\mathrm{P}(\mathrm{A}), \subseteq\}$. Where A is any set. what are the greatest and least elements?
(b) Let $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ be given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+1$ find f^{-1}.

13 (a) How many permutations can be made with letters of the word CONSTITUTION?
(b) Using generating function, solve the $\mathrm{y}_{\mathrm{n}+2}-4 \mathrm{y}_{\mathrm{n}+1}+3 \mathrm{y}_{\mathrm{n}}=0$, given $\mathrm{y}_{0}=2, \mathrm{y}_{1}=4$.

14 (a) Solve the recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=0$ where $a_{0}=2$ and $a_{1}=5, n \geq 0$.
(b) Show that for any group G is abelian iff $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$.

15 (a) Show that K3,3 is non planar.
(b) Explain Welsh and Powell Graph Coloring Algorithm.

16 (a) Show that a simple connected planar graph with 8 edges and 13 vertices cannot be colored with 2 colors.
(b) How many integers between 1 and 1000 inclusive have the sum of the digits?
i) Equal to 7
ii) Less than 10

17 (a) Use Truth tables to verity the following logical equivalences:
i) $\quad \mathrm{p} \rightarrow(\mathrm{q} V \mathrm{r}) \Leftrightarrow[\neg \mathrm{r} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})]$
ii) $\quad[(\mathrm{p} V \mathrm{q}) \rightarrow \mathrm{r}] \Leftrightarrow[(\mathrm{p} \rightarrow \mathrm{r}) \Lambda(\mathrm{q} \rightarrow \mathrm{r})]$
(b) Write a short note on Cyclic Groups.

